- 1. FORTRAN の変数名: 先頭が英文字で8文字程度以下の英数字. 大文字と小文字の区別はない.
 - (例) I X ABC K20 B1X3 (5CX は, 先頭が数字なのでダメ)
- 2. 暗黙の型宣言
 - ・型宣言をしていない変数で、変数名の先頭文字が I,J,K,L,M,N のいずれかなら整数型変数、 それ以外は(単精度)実数型変数
 - ・IMPLICIT 文により、上記の取り決めを変更することができる.
 - (例) IMPLICIT REAL*8 (A-H,O-Z) 変数名の先頭文字が、A~H と O~Z なら倍精度実数
 - 注) 暗黙の型宣言文については、一部プログラマーから酷評される場合があるが、よく理解して使用すれば、これほど便利なものはない、暗黙の型宣言文を無効にする命令もあるが、変数すべての型宣言が必要.
- 3. 型宣言文 整数型 INTEGER 単精度実数型 REAL 倍精度実数型 DOUBLE PRECISION 単精度実数は REAL*4 倍精度実数は REAL*8 でもよい.

 文字型 CHARACTER あるいは CHARACTER*文字数
- 4. 配列変数:同じ変数名で大量のデータを扱うために使用される. DO ループ等で効果的に利用できる.
 - ・最初に配列宣言が必要:配列宣言文(例) DIMENSION ABC(100),IMAX(10,30),NOZOMI(3,10,5)
 - ・ABC(100) は、ABC(1)~ABC(100) の 100 個のデータ
 - ・IMAX(10,30) は、IMAX(1,1)~IMAX(10,30) の 300 個 (10×30) のデータ
- 5. FORTRAN (固定形式) のプログラム (以下は、固定形式のものである. それ以外に、自由形式がある.)
 - ・基本的に、1行に1文しか書けず、命令文は、7桁目(第7カラム)から72桁目までに書く.
 - ・文番号は $1\sim5$ カラム $(1 桁目 \sim5 桁目)$ に書く. なお, 6 桁目は継続行の印に使われる.
 - ・注釈行 (コメント行) の印 (C あるいは *) は第1カラム (1桁目) に書く. (行の先頭に C あるいは * を書いた場合, その行は意味を持たない)
 - ・1行(72 桁目まで)で書ききれない命令文は次の行以降の $7\sim72$ 桁目にまたがって書くことができる. 続く行を「継続行」と呼び、継続行の第 6 カラムには「 0 (ゼロ) 以外の文字」を入れる(空白記号もダメ). 継続行は 19 行まで続けられる(最初の行と合わせて 20 行まで).
 - ・行の途中で、以降をコメントにしたい場合には、そこに ! を書いたうえでコメントを書く.
 - ・命令文の途中の任意の場所に「空白」を入れることができ、それはコンパイル時に無視される. (ただし、「空白」そのものに意味がある場合は、その限りではない.)
- 6. 文番号は、「GOTO 文のジャンプ先」、「繰返し文(DO 文) の端末行」等に用いる.
- 7. A = B + C のような命令文を代入文と呼ぶ、右辺で計算した結果を左辺の変数に代入する命令、従って、A = A + 2 というような数学的には矛盾するような命令も意味を持つ、なお、A + B = C + D という命令は誤りである.

足し算記号+引き算記号-かけ算記号*わり算記号/べき乗記号**平方根SQRT()自然対数LOG()常用対数LOG10()絶対値ABS()正弦SIN()余弦COS()正接TAN()逆正弦ASIN()

- ・整数同士の割算は「切り捨て」となるので注意 (例) 8/3+1 の計算は 3 となる
- ・優先順序を示すカッコは、丸カッコ()を何重にも用いる (例) C=(A+B*(X**(K+3)-Y))/(P-5.8)
- 8. 入力命令(並びによる入力の例) READ(*,*) IA,B,XYZ,S20 標準の入力装置(パソコンではキーボード)から変数の並びの順にデータを入力する. 上の例では, 例えば, 10,20.3,123.45,56 と入力すると IA=10, B=20.3, XYZ=123.45, S20=56.0 となる. 入力データの区切りの印には,「コンマ」あるいは「空白」を用いる

- 9. 出力命令(出力の例)
 - ① WRITE(*,*) A,XYZ,I20
 - ② WRITE(*,600) ABC,IP

600 FORMAT(F10.5,I8)

- ③ WRITE(3,*) K5,BBB,Z80
- ・WRITE 文の括弧の中の最初の記号は「出力先」を示す(* は標準出力,パソコンではディスプレイ). 次の記号は「書式」を示す(* は並びによる出力).
- ・「出力先」に「ファイル名等」を指定するには、OPEN 文、CLOSE 文を用いるが、詳細は省略する.
- ・通常は、出力を終えた後「改行」するが、下記の書式の最後に \$ を入れると「改行は行わない」
- 10. 書式の例

整数型書式 I10 : 文字型書式 A8 A

実数型書式 F9.4 E15.7 G18.9 (例) 123.45→ 123.45 (F6.2) 0.12345E+03 (E11.5)

任意文字の出力(アポストロフィーで囲む) 'Mie University'

X書式(空白の出力) 例 5X , H書式(任意文字の出力) 例 14HMie University

11. FORTRAN の命令の実行順序

基本的には、主プログラムの最初に書かれた命令文(宣言文を除く)から順に下に向って実行される. ただし、途中にジャンプ文(GOTO文)があると、そこからは、指定行へ強制的にジャンプする.また、分岐文があると、条件に応じて実行される命令文が異なってくる.

12. ジャンプ文(指定する行の命令へジャンプする)

GOTO 文番号

・小さい

- 13. 分岐文(条件判断文, IF文)には、論理 IF文, ブロック IF文, 算術 IF文がある(大まかに言って).
 - ① 論理 IF 文: IF(条件式) 命令文

(例) IF(A.GT.B) GOTO 100

括弧の中の「条件式」を満たせば「命令文」が実行される.「命令文」を実行した後は、次の行に実行が移る. ただし「命令文」が GOTO 文なら、指定された行へジャンプする. なお、条件式を満足しなければ、そのまま次の行に実行が移る.

②条件式としてよく用いるものに以下のようなものがある.

(記号で書く場合) ------

・等しい == (例) I2 == K

・等しくない /= J/=100

・大きい > P3C > XYZ

・大きいか等しい >= MC>=N5

<

・小さいか等しい <= NN <= 300

上記の関係演算子は下記2つの論理演算子より優先順位が高いので、下のカッコは付けずともよい.

X < 12.34

・論理積 .AND. (I = = 5).AND.(A < B)

・論理和 .OR. (I = = 5).OR.(A < B)

(文字で書く場合) ------

・等しい .EQ. (例) I2.EQ.K

等しくない .NE. J.NE.100

・大きい .GT. P3C.GT.XYZ

・大きいか等しい .GE. MC.GE.N5

・小さい .LT. X.LT.12.34

・小さいか等しい .LE. NN.LE.300

・論理積 .AND. (I.EQ.5).AND.(A.LT.B)

③ブロック IF 文:

IF(条件式 1) THEN

条件式1を満足した場合に実行する命令文(複数行可)

途中に GOTO 文で外へ飛び出さないならば、この後 ENDIF の次へ実行が移る

ELSEIF(条件式 2) THEN

条件式1を満足せず、条件式2を満足した場合に実行する命令文(複数行可) 途中にGOTO文で外へ飛び出さないならば、この後 ENDIF の次へ実行が移る

ELSEIF() THEN

•••••

.....

ELSE

いずれの条件も満足しない場合に実行する命令文(複数行可)

途中に GOTO 文で外へ飛び出さないならば、この後 ENDIF の次へ実行が移る

ENDIF

(例) IF(N.GE.100) THEN

A=A+COS(X)

ELSE

B=B+SIN(X)

ENDIF

- ④算術 IF 文: IF (算術式) 文番号 1, 文番号 2, 文番号 3
 - ・算術式の結果が「負」なら文番号 1 へ,「ゼロ」なら文番号 2 へ,「正」なら文番号 3 へ実行が移る(ジャンプする) (例) IF(M+N) 10,20,30
- 14. 繰り返し文(DOループ):制御変数が最終値を越える手前まで、命令文が繰り返し実行される.
 - DO **文番号** 制御変数=初期値,最終値,制御変数に加算される値 繰返し実行される命令文(複数行可)

文番号 最後の繰返し実行文(一般的には、CONTINUE 文がよく用いられる)

(例) S=0 S=0

DO 20 I=1,10 左右どちらも DO 20 I=1,10

DO 10 J=1,30,5 同じ計算内容 DO 20 J=1,30,5

IMAX(I,J)=I*2+J IMAX(I,J)=I*2+J

10 S=S+XYZ(I,J) S=S+XYZ(I,J)

20 CONTINUE 20 CONTINUE

- ・上の例では、制御変数 J は、1,6,11,16,21,26 のように変化して命令が繰り返される
- ・制御変数に加算される値が 1 の場合は、1 は省略できる. (例) DO 20 I=1,10
- ○繰り返し文の DO ループに文番号を使わない方法もある

DO 制御変数=初期値,最終値,制御変数に加算される値繰り返し実行される命令文(複数行可)

ENDDO

(例) DO I=1,10,2

DO K=1.30

IMAX(I,K)=..... XYZ(I,K)=.....

ENDDO

ENDDO

- 15. CONTINUE 文とは:文番号だけは保持するがそれ以外には特に何も実行しない命令文
- 16. FORTRAN プログラムは、1つの主プログラムと複数(ゼロでもよい)の副プログラムから成る
- 17. 主プログラムと副プログラム, あるいは, 異なる副プログラムにおいては, 変数名は独立して用いられる (同じ変数名が用いられても, 引数や共通ブロックの中で名前を一致させない限り, 異なる変数となる)
- 18. 副プログラムは「プログラムを整理して見やすくするため」と「同じような処理を何度も繰返して記述しないで1回の記述で済ますため」等に利用される.
- 19. 副プログラムには、関数副プログラムとサブルーチン副プログラムがある(大まかに言って).
 - ①関数副プログラム: FUNCTION 関数名(引数の並び)
 - (例) FUNCTION XG3(A.B)
 - ・括弧の中に並んでいる変数を引数と呼び、異なるプログラム間のデータの受け渡しに用いる (呼び出す側の引数を実引数、呼び出される側の引数を仮引数と呼び、実引数と仮引数それぞれで、 変数の個数は同じで、変数の並びの順に型が一致している必要がある.このことは、サブルーチン 副プログラムでも同様である)
 - ・関数副プログラムを呼び出すには、呼び出す側の命令文の中でその関数を使用すればよい
 - (例) X=Y+XG3(P,Q)
 - ②サブルーチン副プログラム: SUBROUTINE サブルーチン名(引数の並び)
 - (例) SUBROUTINE SYZ(P,G,R)
 - ・サブルーチン副プログラムを呼び出すには CALL 文 を用いる.
 - (例) CALL SYZ(A,B,C)
- 20. 主プログラムと副プログラム、あるいは、副プログラム間でデータを受け渡しする方法
 - ①引数(実引数と仮引数)による方法
 - ・実引数と仮引数の中の変数の型は、それぞれの並びの順に同じ型(一致した型)でなければならない。
 - ②共通ブロック (コモンブロック) で定義した変数による方法
 - ・共通ブロックの宣言 COMMON /共通ブロック名/変数の並び
 - (例) COMMON /B001/ A,XC9,P(10),HH(3,2)
 - ・同じ共通ブロック名の「変数の並び」に置かれた変数の型は、並びの順に同じ型(一致した型) でなければならない.
 - ③関数副プログラムの場合は関数名そのものが変数となるので、その変数名による方法
- 21. 文関数:1行(1つの式)で定義できる関数は、関数副プログラムを使わないで、プログラムの先頭で定義して用いることもできる.これを文関数と呼ぶ.
 - (例) BBC(X,Y)=SQRT(X*X+Y*Y)
- 22. 計算実行を停止する文 (プログラムの必要な場所に何か所でも入れられる)

STOP 停止箇所を特定するには、 STOP 123 あるいは STOP 'abc'

23. 副プログラムから主プログラムに戻る箇所に書く文(必要な場所に何か所でも書ける)

RETURN

24. プログラム単位の記述の終わりを示す文(プログラム記述の最後に入れる. 主プログラムと各副プログラム の終わりにそれぞれ必要)

END